Меню Содержимое
Home

Предложение к микробиологам

 
 

Tesla

We have some technical projects that will interest you!

1. new generation Desulfatory. Those devises helps support the workof modernbatteries on the maximumcapacity during thewarranty period ofseveral. We canupgradeexisting systems.

2. Radiant, currents free chargers by Bedini method. It will speed up charging the battery 2 times compared to the existed currents charging.

3. Motor have created with Edvin Gray technology. We can replicates this system at our university.

4. https://www.youtube.com/watch?v=vvD9R_tQOiw. We can replicate this system. All details at meeting. I can improve this technology with electromagnetic screening.

5. We have mobile of Kapanadze.

6. TPU of Steven Mark. Unic system with selfchrgang.

7. Rossi heat reactor. We have developed adetailedtechnology.All details at meetingat Lviv.

8. Gas generator of Berden. Home generator of HHO gas for home use.

9. Parametric resonance

10. Ankvich generator. Home electric Self powered generatro. I have some experimental details. Wich based elecsromagnetic scrining.

11. EnergyHavesting. That system based on Avramenko fork.

12. resonance Inductionheaters with exect tecnology

13. ProfessionalBroadbandinverters based on TLT 474. 

 

Biopulsar

 

The Biopulsar device shows the frequency of an aura in colors. For convenience, it can be divided into four ranges. These ranges correspond to the realms of suffering, struggle, adventures and will. Through changing the frequency of the aura, it is possible to transit from one realm to the other. In order to change the frequency of the aura, it is necessary to select the essential oils or go through the treatments with the Tor-1 Harmonizer, or in the hypo-magnetic chamber. The Biopulsar device should be used for verification of results.

 

Lead tungstate ( PbWO4 )

Lead tungstate ( PbWO4 ) is a new scintillating crystal discovered in 1990s. It is one of the most dense oxide crystal ( 8.3g/cm3), and is distinguished by its short radiation length ( 0.9 cm), small Moliere radius ( 2.19cm) and strong irradiation hardness. Its scintillation light output peaks between 450-550nm with a fast component decay time in the range from 2-20ns. After irradiation with g-ray, the degradation in the optical transmittance is not large up to 106 rad. PbWO4 is considered as a promising scintillation material for electromagnetic spectrometer in high energy, nuclear physics experiment as well as nuclear medicine. Main Properties Crystal structure Tetragonal Space group I 41 /a Lattice constant (Å ) a = b = 5.416 , c = 12.049 Density (g/cm3) 8.28 Radiation length (cm) 0.92 Molere radius (cm) 2.19 Decay constant (ns) 6/30 Peak emission (nm) 440/530 Light output (%) 0.5 Index of refraction 2.16 Melting point (oC ) 1123 Hygroscopicity No Cleavage (101) Crystal boule size 30 mm in diameter x 100 mm in length 

 

 Scintillation single crystals 4.1. PbWO4 crystals The Czochralski method was considered to be the most suitable for large-scale industrial production of PbWO4 crystals. In particular, it was used to provide huge amounts of these crystals (about 100 000 scintillation elements) for the CMC and ALICE projects at CERN [15]. A crystal growth technology of large-size PbWO4 crystals (35 mm in diameter and 250 mm long) for scintillation detectors was developed at Institute. It is characterized by comprehensive approach to technological preparation of the starting material (including re- -crystallization) and to the doping of the crystals with dierent ions for the formation of preset properties, such as maximum position of luminescence spectrum, radiation hardness, absence of colour centres which re-absorb the host luminescence [15]. Experimental investigations of PbWO4 crystal growth were carried out by use of the setups with high-frequency heating Crystal 3M and Analog. Lead tungstate crystals were grown by the Czochralski method from platinum crucibles in an atmosphere with a composition close to that of air or inert gases. At rst the homogeneous mechanical mixture of tungsten and lead oxides (99.999% purity) was melted to increase the density and perform preliminary synthesis. For additional purication, averaging of the chemical composition, as well as for reducing the deviation from the stoichiometry, the charge was preliminarily re- -crystallized. During successive crystallization processes the melt composition is being corrected, the doping is realized taking into account the measurements of the parameters of the scintillation elements. Lanthanum, yttrium or niobium doped PbWO4 crystals were grown. The dopant concentration was few tens of ppm. The single crystals and rectangular scintillation elements are shown in Fig. 8. Fig. 8. PbWO4 single crystal and scintillation elements. The Czochralski method was successively applied for crystal growth where the formation of preset properties was achieved by modication of both the cationic and anionic sublattices. Experimental choice of growth conditions and dopants for modication of the cationic and anionic sublattices of PbWO4 crystal allows to control the properties of these crystals within wide range, in particular, to vary the luminescence kinetics and position of host luminescence maximum and to achieve essential increase of light yield or radiation hardness, for example 

 

Gadolinium Gallium Garnet

 Gadolinium Gallium Garnet (GGG, Gd3Ga5O12is a magneto-optical and microwave substrate. It is the best substrate material for infrared optical isolator (1.3 and 1.5um), which is a very important device in optical communication. It is made of YIG or BIG film on the GGG substrate plus birefringence parts. Also GGG is an important substrate for microwave isolator and other devices. Its physical, mechanical and chemical properties are all good for the above applications. 

 

Phase and amplitude diffraction gratings

 
Phase and amplitude diffraction gratings are intended for the UFO observations, anomalous zones, and torsion generator fields. They are fastened to video cameras and mobile phones. The anomalous zones make an influence upon the passage of light through the air. That is why the spectral decomposition of the light after the diffraction gratings the spaces which contain the anomalous zones or the torsion generator field changes their color configuration. When such a grating is aimed at the UFO, a light spectrum is scattered and radiates the UFO by the constituent parts. This makes possible the analysis of the UFO radiations which are not visible by the naked eye. 
 

Lithium niobate

Lithium Niobate (LiNbO3 or LNB) and Lithium Tantalate (LiTaO3 or LTA) possess a combination of unique electro-optical, acoustic, piezoelectric, pyroelectric and non-linear optical properties making it a suitable material for applications in acoustic, electro-optical and non-linear optical devices, high-temperature acoustic transducers, receivers-transmitters of acoustic vibrations, air force acceleration meters, acoustic wave delay lines, deflectors, generators of non-linear distorted waves, acoustic filters, electro-optical Q-modulators (Q-switch), encoders-decoders, filters in television receivers, video-recorders and decoders, converters, frequency doublers and resonators in laser systems, non-linear elements in parametric light generators, etc. An indispensable condition of some of these applications is a high degree of optical uniformity of Lithium Niobate crystals used for fabrication of active elements. Crystal growth technology by low temperature-gradient Czochralsky method allows the growth of large-size high-quality LNB (up to 1-1.5 kg) and LTA single crystals for such non-conventional applications. It should be noted that both crystals are non-hygroscopic, colourless, water-insoluble and have low transmission losses.
   LiNbO3 damage due to photorefractive effect in congruent melt grown LiNbO3 certainly limits it's applications in high optical power devices. For this purpose specially grown LiNbO3 with composition near stoichiometric can be offered. It is similar to the Li-rich VTE LiNbO3 with the obvious advantage that bulk samples can be obtained. Another possibility to increase laser damage threshold of LiNbO3 is doping with MgO. MolTech can offer both MgO:LiNbO3 and stoichiometric LiNbO3 elements cut from boules up to 60 mm dia.
   Some other crystals of LiNbO3 series are available, including LiNbO3 doped with Fe, Zn, Gd, Cu , Y, B, Er etc.
   For some applications similar in properties to Lithium Tantalate (LiTaO3) crystal is more advantageous than LiNbO3 (E-O modulators, pyroelectric sensors etc.). Lithium Tantalate exhibits unique electro-optical, pyroelectric and piezoelectric properties combined with good mechanical and chemical stability and wide transparency range and high optical damage threshold. This makes LiTaO3 well-suited for numerous applications including electro-optical modulators, pyroelectric detectors, optical waveguide and SAW substrates, piezoelectric transducers etc. MolTech can offer parts cut from high quality boules grown along X axis, fully poled, with dia. and length of up to 60 mm.
MAIN PROPERTIES:

MaterialLNBLTA
Transparency range, µm0.4 - 50.4 - 5
Point group3m3m
Space groupR3cR3c
Lattice parameters (hexagonal), Åa = 5.148, c = 13.863a = 5.154, c = 13.784
Density, g/cm34.647.45
Mohs hardness55.5
Refractive indexes :no = 2.28647, ne = 2.20240 (at 0.633 µm)no = 2.183, ne = 2.188 (at 0.6 µm)
 no = 2.2273, ne = 2.1515 (at 1.1523 µm)no = 2.131, ne = 2.134 (at 1.2 µm)
Non-linear coefficient at 1.06 µm, pm/Vd22 = 5.6, d31 = -11.6, d33 = 8.6d22 = 2, d31 = -1, d33 = -21
Electroptical coefficient at 0.63 µm, pm/Vr31 = 8.6, r22 = 3.4, r33 = 30.8, r51 = 28r13 = 8, r22 = -0.2, r33 = 30

  MolTech provides LiNbO3 and LiTaO3 crystals with high optical quality as finished wafers, elements or blanks at your request. Orientation, polishing, single-band and dual-band AR-coatings by customers' order. The AR-coatings are characterized by low reflectance, high damage threshold and long durability.
 

Akimov generator

The Akimov generator using own radiator removes the membrane between parallel worlds and opens the portals to the parallel worlds. The portal remains active for several days after turning off the generator.  The portal parameters depend on the frequency spectrum supplied to the radiator. If two Akimov generators with the same spectra are switched on in various places this has to make a teleportation tunnel through which radio waves can pass in both directions.
 

HMS (Hologram Matrix Scan) Hardware and Software System

Description.

The HMS Hardware and Software System had been created for analysis and research of the sound and radio wave spectra received with the help of a laser device based on the LGN-303 laser, which had been used by Georgy Georgiyevich Tertyshny, Nikolay Grigoriyevich Kokaya, Peter Petrovich Gariaev in their experiments.

The software system consists of several modules – programs and devices for connecting the laser scanner with a computer and other devices.

Description of the software modules.

1. “Data base” software module controls the spectra base. It is possible to edit the information about the spectra, to add the new spectra and to start from its shell various other software modules for analysis of the saved spectra.
2. “T-Analysis” software module – it analyzes the cosmo-genetic situations and chooses the time for creating a spectrum with necessary parameters.
3. “Linguistic analysis” software module – it processes the recorded spectrum with various methods and analyzes it for the presence of text information. It is possible to select in the settings various types of alphabets and connect the dictionaries, according to which the presence of useful information is being verified.
4. “Musical Matrix” software module – it is used for converting the information of the spectrum received with the help of PWM (Pulse-Width Modulation) AFC (Automatic Frequency Control), or with the PWM PS-41 (Power Supply – 41), into a musical melody. Two main types of converting are used: space-based converting and time-based converting.
5. “Scanner” software module – it is used for extracting the information from a photograph for the subsequent visualization. Two variants of information extraction are possible:
1. general photograph background extraction;
2. pixel by pixel extraction of information from a photograph.
6. “Visualization” software module – it carries out the processing of the received photograph spectrum and its graphical analysis.

7. “Irradiator” software module – it reproduces various types of recorded spectra in different frequency ranges. This is connected with significant losses of useful information in sound matrices. Therefore, all the experiments with rats carried out by Mr. Tertyshny, Mr. Kokaya, Mr. Gariaev, were conducted with the help of the total spectrum of radio waves radiated by the LGN-303 power supply unit. 

 
<< [Первая] < [Предыдущая] 1 2 3 4 5 6 7 8 9 10 [Следующая] > [Последняя] >>

Результаты 21 - 30 из 110